
Dynamic Configuration and Provisioning of Devices
and Services with ONOS

Brigade Dynamic Configuration

Nov, 2016

1

Dynamic Configuration of Devices

• Goal: Enable a network operator to seamlessly bring up/down and
configure devices from different vendors and to verify the config
– With minimal or no human intervention

• Benefits
– Network operators: Significant opex savings and vendor independence

– Vendors: Faster integration of its products into operators’ networks and
better value prop to its customers (e.g., reduced opex)

2

3

Device Config App

Device Config
Data Store

Config APIs for Devices
(Auto generated by Yang

Tools)

NetConf Device Drivers

Dynamic Configuration of Devices

ONOS (Config)

• ONOS solution based on NetConf
and Yang –industry standards

• The Device Config Store contains
all device specific config info
– Schema and actual config parameters

• The Device Config APIs are auto
generated by Yang tool chain and
device Yang model

• A device config app uses auto
generated API to configure a
given device
– The API writes the config parameters

into the store

– The store generates a notification to
the driver software to actually
program the device via NetConf

Yang Tool Chain (for ONOS)

• Creation of Yang Tool Chain a significant milestone
– Could not use ODL Yang Tool Chain as it is too tied to MD-SAL
– It is difficult to make it completely platform independent

• Ours is tied to ONOS APIs

• For every device type, the vendor provides the Yang model which is used to auto create a schema,
skeleton code and validation code: the schema is stored in a repository and the code with the API is
added to the code base

• A developer fills in the details in the skeleton code (the device specific logic) to make Java code
complete 4

Device Yang Model

Yang Tool Chain

Auto-generated API
Java skeleton code

Config Schema

Validation Code

5

Device Config App

Device Config
Data Store

Config APIs for Devices
(Auto generated by Yang

Tools)

NetConf Device Drivers

Dynamic Configuration of Devices

ONOS Config
 Sub-System

• When a device is connected to the
net, ONOS auto discovers it
– Devices boot off of the network (similar

to servers & switches in a datacenter)

• Using the device config schema, an
instance of the device config is
created in the config tree (store)

• Using NetConf/Yang the device
initializes its config instance in the
config tree

• Config tree (store) can notify the
app listening for an update to
further config the device using the
Config API

Config
Schema

Repo

6

Device Config App

Device Config
Data Store

Config APIs for Devices
(Auto generated by Yang

Tools)

NetConf Device Drivers

Dynamic Configuration of Devices: Example

ONOS (Config)

1. Device is connected to the net

2. ONOS auto discovers it

3. Device Config instance is created in

Config Store

4. Using NetConf/Yang the device

initializes its configuration in the

config store

5. Config store notifies an app

6. The app further configures the

device

7. Device drivers actually write the

config into the device

1

2

3

5

6

7
4

7

Device Config App

Device Config
Data Store

Config APIs for Devices
(Auto generated by Yang

Tools)

NetConf Device Drivers

Scalability and Performance Challenges

ONOS (Config)

• A network of a large service
provider may include 100K+
devices and 100M+ ports
– Lot of dynamism: devices go up/down

for service upgrades as well as due to
failures; new services being provisioned
all the time

• The Config Data Store
implementation is a challenge
– 100M+ nodes in the tree

– Need prefix based search operations

– Want transaction semantics

– O(1K) device config operations per
second

– O(1K) service config operations per
second

– Peaks maybe much larger

With HA and durability

8

Device Config App

Device Config
Data Store

Config APIs for Devices
(Auto generated by Yang

Tools)

NetConf Device Drivers

Distributed Implementation of Config Data Store
with ONOS Clustering

• ONOS is horizontally scalable and uses a
number of servers as a cluster

• ONOS supports a variety of distributed
data stores with different consistency,
availability and durability attributes

• A new distributed data store called
DocTree has be created to implement
Device Config Data Store on the ONOS
cluster

• The DocTree data store

– Takes advantage of ONOS cluster

– Efficiently implements Config Tree

– Allows efficient prefix based searches

– Allows transaction semantics

– Allows HA and durability as appropriate

Don’t know if any other solution can do this

A Set of Distributed State Maps

A New Distributed Data Store: DocTree

ONOS Cluster

Mapped on ONOS Cluster

How about dynamic Configuration and
Provisioning of Services?

9

Dynamic Configuration/Provisioning of Services

• Goal: Enable a network operator to seamlessly configure and
provision a service on the network comprising many devices from
many vendors
– With minimal or no human intervention

• Benefits
– Network operators: Agility to deploy new services with reduced opex

– Vendors: Opportunity to support many services on the devices

10

Service Models in Yang

• A new service creator writes a Yang Model

• Yang Tool Chain translates the Yang Model of the Service into (1) API calls, skeleton
Java code, a config schema, and some validation code

• The service creator also write business logic into the skeleton code to “implement”
service provisioning based on the underlying platform such as ONOS

• Service schema is added to a schema repository; code is added to the code base 11

Yang Model of a Service

Yang Tool Chain

Auto-generated API
Java code

Config Schema

Validation Code

Provisioning of a Service: Create an Instance

12

Device Config App

Service Config APIs
(Auto generated by Yang

Tools)

NetConf Device Drivers

Service Config
Store

Service Config App

Service Config APIs
(Auto generated by Yang

Tools)

Device Config
Data Store

Service (Instance)
Creation Request

in Yang 1. A request is received to instantiate a
service (already specified before)
– Its schema is in Schema Repo and code in code

base with APIs auto generated

2. The Service Config App adds an
instance of service config to the service
config tree (store)

3. The Config App programs the instance
specific config parameters into config
tree

4. The Config App (or something) will
initiate writing of new config
parameters in Device Config Tree

5. Device drivers actually write the new
config parameters into the device

1

2

2

3

3

2 3

4

5

