
Performance evaluation of
ONOS support for P4Runtime

Proposed activity for the Sec&Perf brigade

Carmelo Cascone
MTS, ONF

June 17, 2019
ONF Sec&Perf Workshop @ TMA 2019

• P4Runtime recap
• P4Runtime subsystem in ONOS
• Performance considerations

2

Outline

Copyright © 2019 - Open Networking Foundation

P4 - Data plane pipeline programming language

ASIC, FPGA, NPU, or CPU

Packets
Pipeline of match-action tables,
programmable or fixed-function

Table {
 match
 actions
}

Compiler (provided by switch vendor)

mypipeline.p4

Copyright © 2019 - Open Networking FoundationSlide courtesy P4.org

P4 workflow summary 4

P4 Program

P4 Architecture
Model

P4 Compiler

Target-specific
configuration

binary

Control Plane

Data PlaneTables Extern
objectsLoad

Vendor supplied

User supplied

Add/remove
table entries

CPU port

Packet-in/outExtern
control

P4Runtime

Copyright © 2019 - Open Networking Foundation

P4Runtime v1.0

● Released on Jan 2019

● Open source specification
○ Started by Google and Barefoot in mid-2016
○ Contributions by many industry professionals

● Based on continuous implementation
feedbacks from Google and ONF
○ First ONF demo in Oct 2017

https://p4.org/p4-spec/
https://github.com/p4lang/p4runtime

https://p4.org/p4-spec/
https://github.com/p4lang/p4runtime

Copyright © 2019 - Open Networking Foundation

P4Runtime client
(control plane)

P4Runtime overview

● Protobuf-based API definition
○ Efficient wire format
○ Automatically generate code to serialize/deserialize

messages for many languages

● gRPC-based transport
○ Automatically generate high-performance client/server

stubs in many languages
○ Pluggable authentication and security
○ Bi-directional stream channels

● P4-program independent
○ Allow pushing new P4 programs to reconfigure the

pipeline at runtime

● Equally good for remote or local control plane
○ With or without gRPC

6

p4runtime.proto
(API)

P4Runtime server
(e.g. Stratum)

Target driver

P4 target

Copyright © 2019 - Open Networking Foundation

P4Runtime main features

● Batched read/write of pipeline state
○ Table entries, action groups, counters, registers, etc.

● More robust mastership handling wrt OpenFlow
○ With ordering of writes

● Multiple master controllers via role partitioning
○ E.g. local control plane for L2, remote one for L3

● More flexible and efficient packet I/O
○ OpenFlow-like packet-in/out with arbitrary metadata
○ Digests, i.e. batched notification to controller with subset of packet headers

● Designed around PSA architecture
○ But can be extended to others via Protobuf “Any” messages

Copyright © 2019 - Open Networking Foundation

P4 compiler outputs 8

test.p4

test.bin

Control plane

p4runtime.proto

P4Runtime server

Target driver

Switch ASIC

p4c
(compiler)

1. Target-specific binaries
○ Used to realize switch pipeline

(e.g. binary config for ASIC, bitstream for FPGA, etc.)

2. P4Info file
○ “Schema” of pipeline for runtime control

■ Captures P4 program attributes such as tables,
actions, parameters, etc.

○ Protobuf-based format
○ Target-independent compiler output

■ Same P4Info for SW switch, ASIC, etc.

test.p4info

Full P4Info protobuf specification:
https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

https://github.com/p4lang/p4runtime/blob/master/proto/p4/config/v1/p4info.proto

Copyright © 2019 - Open Networking Foundation

P4Info example 9

...

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 eth.dstAddr = dstAddr;
 metadata.egress_spec = port;
 ipv4.ttl = ipv4.ttl - 1;
}

...

table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

basic_router.p4
actions {
 id: 16786453
 name: "ipv4_forward"
 params {
 id: 1
 name: "dstAddr"
 bitwidth: 48
 ...
 id: 2
 name: "port"
 bitwidth: 9
 }
}
...
tables {
 id: 33581985
 name: "ipv4_lpm"
 match_fields {
 id: 1
 name: "hdr.ipv4.dstAddr"
 bitwidth: 32
 match_type: LPM
 }
 action_ref_id: 16786453
}

basic_router.p4info

P4 compiler

Copyright © 2019 - Open Networking Foundation

P4Runtime table entry WriteRequest example 10

device_id: 1
election_id { … }
updates {
 type: INSERT
 entity {
 table_entry {
 table_id: 33581985
 match {
 field_id: 1
 lpm {
 value: "\n\000\001\001"
 prefix_len: 32
 }
 }
 action {
 action_id: 16786453
 params {
 param_id: 1
 value: "\000\000\000\000\000\n"
 }
 params {
 param_id: 2
 value: "\000\007"
 …

action ipv4_forward(bit<48> dstAddr,
 bit<9> port) {
 /* Action implementation */
}
table ipv4_lpm {
 key = {
 hdr.ipv4.dstAddr: lpm;
 }
 actions = {
 ipv4_forward;
 ...
 }
 ...
}

hdr.ipv4.dstAddr=10.0.1.1/32
-> ipv4_forward(00:00:00:00:00:10, 7)

basic_router.p4

Logical view of table entry

WriteRequest message (protobuf text format)

Control plane
generates

Copyright © 2019 - Open Networking Foundation

An aside on Stratum and
fixed-function switches...

Copyright © 2019 - Open Networking Foundation

Role of P4 for fixed-function chips

● P4 program tailored to apps / role - does not describe the hardware
● Switch maps program to fixed-function ASIC
● Enables portability

ASIC 1 ASIC 2

Logical

Physical

Control

Mapping
Manual or

via compiler

Slide courtesy: Google

Copyright © 2019 - Open Networking Foundation

Project Stratum (ONF)

● Vendor-agnostic implementation of next-gen SDN interfaces
○ P4Runtime, gNMI (config), and gNOI (operations)
○ Production-ready, minimize bugs and improves time to market for vendor

implementations

● P4 compiler backend for fixed pipeline model (FPM)
○ Produces mapping between P4-defined tables and SDK tables/APIs
○ Initial support for Broadcom Tomahawk and SDKLT

● Extensive conformance test framework
○ Along with a repository of tests
○ Make sure that vendor-specific pieces are implemented as expected

Copyright © 2019 - Open Networking Foundation

Stratum High-level Architectural Components

kernel

hardware

user
Common (HW agnostic)
Chip specific
Platform specific
Chip and Platform specific

P4Runtime gNMI gNOI

Switch Broker Interface

Table
Manager

Node/Chip
Manager

Chassis
Manager

Chip Abstraction Managers
E.g. ACL, L2, L3, Packet I/O,

Tunnel

Platform
Manager

Remote or Local Controller(s)

Switch SDK Platform API

Switch Chip Drivers Platform Drivers

Switch Chip(s) Peripheral(s)

Current support for
● Barefoot Tofino
● BRCM Tomahawk
● BMv2 sw switch

St
ra

tu
m

 s
w

itc
h

ag
en

t

ONLP

Copyright © 2019 - Open Networking Foundation

ONOS support for P4Runtime

Copyright © 2019 - Open Networking Foundation

Design goals

ONOS originally designed to work with OpenFlow and fixed-function
switches

Extended it to:

1. Allow ONOS users to bring their own P4 program

2. Allow existing apps to control any P4 pipeline without
changing the app

○ i.e. provide app portability across many P4 pipelines
○ Re-use Trellis apps with other P4-capable switches

3. Allow new apps to control custom P4-defined protocols
○ e.g. apps for BNG and 4G/5G S/PGW control plane

Copyright © 2019 - Open Networking Foundation

Pipeconf - Bring your own pipeline!

● Package together everything necessary to let ONOS
understand, control, and deploy an arbitrary pipeline

● Provided to ONOS as an app
○ Can use .oar binary format for distribution

pipeconf.oar

1. Pipeline model
○ Description of the pipeline understood by ONOS
○ Automatically derived from P4Info

2. Target-specific binaries to deploy pipeline to device
○ E.g. BMv2 JSON, Tofino binary, FPGA bitstream, etc.

3. Pipeline-specific driver behaviors
○ E.g. mapping of ONOS flow programming API to P4 pipeline

17

Pipeconf support in ONOS

18

Pipeline-agnostic
App

Device with Stratum (BF Tofino, BRCM Tomahawk, BMv2, etc.)

Pipeline-specific
FlowRules, Groups,
Meters, etc

Translation services
Uses pipeconf drivers

Protocol

Core

Events
(packet, topology, etc.)

P4Runtime

Pipeline-aware
App

Pipeconf
Store Pipeconf

(.oar)

FlowObjectives

gRPC
Deploy P4 program, table management,
config, operations

ONOS

Drivers
Stratum

gNMI gNOI

PI
Framework

• PI = (data plane) protocol-independent
• Model: abstraction derived from P4Info
• Runtime: abstraction derived from P4Runtime
• Service: to operate on PI-capable devices

19

PI framework (@beta)

onos/core/api/.../pi/model
DefaultPiPipeconf.java
PiActionId.java
PiActionModel.java
PiActionParamId.java
PiActionParamModel.java
PiActionProfileId.java
PiActionProfileModel.java
PiControlMetadataId.java
PiControlMetadataModel.java
PiCounterId.java
PiCounterModel.java
PiCounterType.java
PiData.java
PiMatchFieldId.java
PiMatchFieldModel.java
PiMatchType.java
PiMeterId.java
PiMeterModel.java
PiMeterType.java
...

onos/core/api/.../pi/service
PiFlowRuleTranslationStore.java
PiFlowRuleTranslator.java
PiGroupTranslationStore.java
PiGroupTranslator.java
PiMeterTranslationStore.java
PiMeterTranslator.java
PiMulticastGroupTranslationStore.java
PiMulticastGroupTranslator.java
PiPipeconfConfig.java
PiPipeconfDeviceMappingEvent.java
PiPipeconfMappingStore.java
PiPipeconfMappingStoreDelegate.java
PiPipeconfService.java
PiPipeconfWatchdogEvent.java
PiPipeconfWatchdogListener.java
PiPipeconfWatchdogService.java
PiTranslatable.java
PiTranslatedEntity.java
PiTranslationEvent.java
...

onos/core/api/.../pi/runtime
PiAction.java
PiActionGroup.java
PiActionGroupHandle.java
PiActionGroupId.java
PiActionGroupMember.java
PiActionGroupMemberHandle.java
PiActionGroupMemberId.java
PiActionParam.java
PiControlMetadata.java
PiCounterCell.java
PiCounterCellData.java
PiCounterCellId.java
PiEntity.java
PiEntityType.java
PiExactFieldMatch.java
PiFieldMatch.java
PiGroupKey.java
PiHandle.java
PiLpmFieldMatch.java
...

• Core service
• Translate pipeline-specific entities from protocol-dependent

representations to PI ones
• E.g. OpenFlow-like headers/criteria and actions to P4-specific ones

20

Translation Service

Translation service
with validation

(based on P4Info-derived pipeline model)

FlowRule Group Meter

PiTableEntry PiActionGroup
PiMulticastGroupEntry

PiMeterCellConfig

Pipeconf

Flow operations

Translation
Service

P4Runtime Client

Pipeliner

Pipeline-agnostic
App

Flow Objective
Serv.

P4Runtime
FlowRuleProgrammable

Pipeconf-based 3-phase translation:

1. Flow Objective → Flow Rule
● Maps 1 flow objective to many flow rules

2. Flow Rule → Table entry
● Maps standard headers/actions to P4-defined ones

E.g. ETH_DST→“hdr.ethernet.dst_addr”

3. Table Entry → P4Runtime message
● Maps P4 names to P4Info numeric IDs

“hdr.ethernet.dst_addr” → 3498746

Flow Rules
(many)

Table Entry

Pipeline
Interpreter

ONOS Core
Device/protocol driver

Pipeconf

Pipeline-aware
App

Flow Rule
Serv.

Flow Objective

P4Runtime protobuf
messages

P4Info

21

PipelineInterpreter (driver behavior)

● Provide mapping from OpenFlow-derived ONOS headers/actions to P4

program-specific entities

● Example: flow rule translation
○ Match

■ 1:1 mapping between ONOS known headers and P4 header names

■ E.g. ETH_DST → ethernet.dst_addr (name defined in P4 program)

○ Action

■ ONOS defines standard actions as in OpenFlow (output, set field, etc.)

■ P4 allows only one action per table entry, ONOS many (as in OpenFlow)

■ E.g. header rewrite + output: 2 actions in ONOS, 1 action with 2 parameters in P4

■ How to map many actions to one? Need interpretation logic (i.e. Java code)!

22

P4Runtime support in ONOS 2.1

P4Runtime control entity ONOS API

Table entry Flow Rule Service, Flow Objective Service
Intent Service

Packet-in/out Packet Service

Action profile group/members, PRE multicast
groups, clone sessions

Group Service

Meter Meter Service (indirect meters only)

Counters Flow Rule Service (direct counters)
P4Runtime Client (indirect counters)

Pipeline Config Pipeconf

Unsupported features - community help needed!
Parser value sets, registers, digests

23

ONOS+P4 workflow recap

● Write P4 program and compile it
○ Obtain P4Info and target-specific binaries to deploy on device

● Create pipeconf
○ Implement pipeline-specific driver behaviours (Java):

■ Pipeliner (optional - if you need FlowObjective mapping)
■ Pipeline Interpreter (to map ONOS known headers/actions to P4 program ones)
■ Other driver behaviors that depend on pipeline

● Use existing pipeline-agnostic apps
○ Apps that program the network using FlowObjectives

● Write new pipeline-aware apps
○ Apps can use same string names of tables, headers, and actions as in the P4 program

24

Copyright © 2019 - Open Networking Foundation

Performance considerations

Performance overhead

26

FlowRule
(ONOS class)

PiTableEntry
(ONOS class)

P4Runtime.TableEntry
(protobuf message)

Translation
via PipelineInterpreter

Encoding
via P4info

Translation
store (KV)

FlowRule
(ONOS class)

PiTableEntry
(ONOS class)

P4Runtime.TableEntry
(protobuf message)

Lookup

Decoding
via P4info

Translation
store (KV)

Write ReadApps

Switch

Apps

Switch

Write

Relevant use cases and metrics

27

• ONOS in production at major US carrier
• Leaf-spine fabric for subscriber access
• Proactive flow programming, routing-heavy (100s of 1000s of routes)

• Known pain points
• Initial switch provisioning / reboot / failure re-routing

• Insert/update routes
• Flow rule reconciliation (periodic, every 10-100 seconds)

• Read device state and compare with ONOS store

• Relevant metrics
• Read/write operations throughput
• Latency for batched write operations
• Memory utilization

Proposed testing methodology

28

• Measure relevant metrics with up to 1M routes

• Remove overhead of switch implementation (e.g. slow ASIC writes)
• Use Stratum “Dummy” switch (yet to be open sourced)

• Write/read from memory instead of ASIC
• Or, implement dummy P4Runtime server

• E.g. in golang or C, easy with gRPC auto-generated stubs

• Remove/minimize RTT between switch and ONOS
• Ideally run ONOS and P4Runtime process on the same machine

• ONOS extended to add support for P4 & P4Runtime

• Maintain backward compatibility with existing northbound APIs
via internal translation

• FlowRule, FlowObjective API → P4Runtime protobuf messages

• Translation adds overhead

• Proposed activity: measure ONOS performance when using
P4Runtime in relevant use causes (routing heavy)

29

Conclusions

Copyright © 2019 - Open Networking Foundation

Get started: ONOS+P4 tutorial

● Basic
○ Learn the basics of P4Runtime and ONOS with hands-on exercises
○ https://wiki.onosproject.org/x/MwP2

● Advanced
○ Build a leaf-spine fabric based on SRv6 with P4 and ONOS
○ https://wiki.onosproject.org/x/xIFfAg

https://wiki.onosproject.org/x/MwP2
https://wiki.onosproject.org/x/xIFfAg

Thanks!

31

