Path recovery behavior comparison between ODL and ONOS controllers

Speaker: Diamanti Alessio

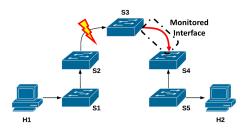
Contributors: Alessio Diamanti (Orange/Cnam), José Manuel Sanchez Vilchez (Orange), Mamadou Tahirou Bah (LIP6)

June 17, 2019

Agenda

- Introduction
- Topology update reactivity
 - Target topology
 - Link up event controller reaction time
 - Variability in reaction times
- Topology discovery traffic
 - LLDP traffic volume
- Conclusion and future work

Introduction


Topology discovery and update are implemented through an event-driven publish-subscriber pattern:

- First discovery is solicited by Openflow switches (OFPT_HELLO);
- The controller periodically checks network state through LLDP protocol;
- Switches notify link disruption/establishment through OFPT_PORT_STATUS

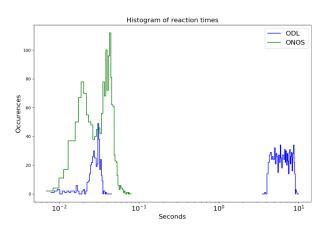
Event's subscribers update network topology representation in a distributed store. Finally, path computation applications react to store representation changes.

Target topology

Target topology was deployed through a **developed python module** able to inject faults and degradations on each of the simulated network elements(not Mininet-based). Two hosts connected by a single path exchanging UDP packets through an **lperf** session.

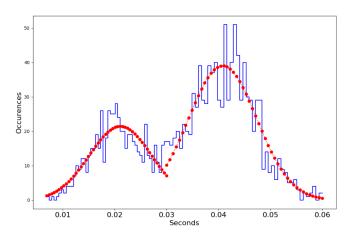
- ONOS Quali and ODL Oxygen;
- org.onosproject.fwd+ org.onosproject.openflow for ONOS and odl-l2switch-all ODL

Reaction time computation

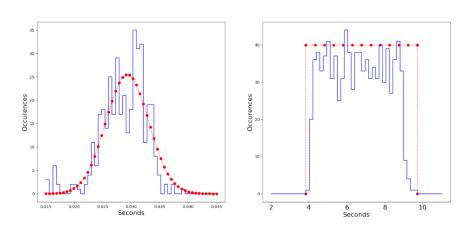

To gather statistically sound data, we performed 1400 iteration of the following steps:

- At t₀ UDP Iperf session is started. H1 is client and H2 the server
- Tshark captures packet on link S3-S4
- At $t_0 + \tau = T_{start}$ the link S2-S3 fails
- lacktriangle After T seconds the link is restored \rightarrow $T_{stop} = T_{start} + T$
- First packet on S3-S4 after $T_{start} + T$ is recorded $\rightarrow T_{first} = T_{stop} + T_{react}$

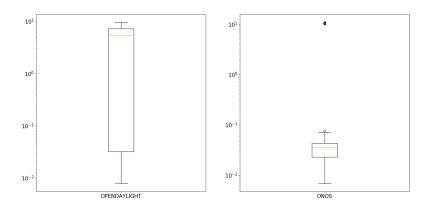
Reaction time


$$T_{react} = T_{first} - T_{stop}$$

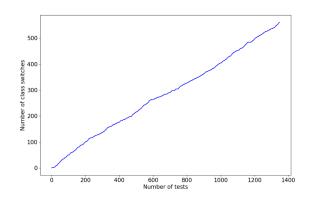
ONOS vs ODL reaction times


■ ODL is unstable: in 30,1% $T_{react} \in [0,0.04]$, while in the remaining 69.91% of cases $T_{react} \in [3,10]$.

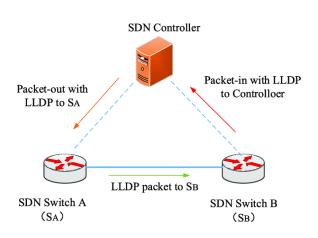
ONOS insights


Two no-gapped modes: first centered near 0.02 secs, the second centered at 0.045 secs

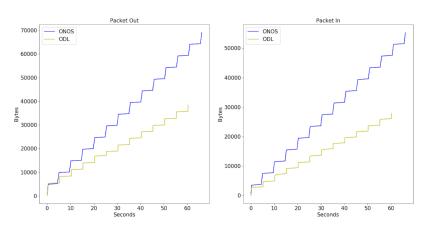
ODL insights


Two gapped modes: first centered near 0.03 secs, the second around 7 secs

Variability


- ONOS median reaction time is 0.036 secs
- ODL median reaction time is **5.45** secs

ODL stability



If at the i-th test the reaction time is in first [second] class in the subsequent i+1-th test the reaction time fall in the second [first] class \rightarrow ODL instability is "predictable".

LLDP protocol

LLDP traffic volumes

ONOS produces a bigger amount of LLDP traffic (PACKET_OUT and thus PACKET_IN)

Conclusion and future work

- ONOS is faster and more stable reacting to link-up event
- ODL is unpredictable when reacting to link-up event

Future work

Why is there a two order of magnitude difference between the two reaction time classes? It would be interesting to study ODL core mechanism triggered by OFPT_PORT_STATUS.

■ ODL produces less LLDP traffic

Future work

Deeply inspect ODL's and ONOS' LLDP implementation

QUESTIONS?