
Evaluation of ONOS performance
Open Networking Foundation

Goals
• We designed a set of experiments to characterize latencies, throughput and capacities

of ONOS under various application and network environments.
• Topology change latency
• Topology scaling
• Flow setup latency/throughput
• Intent operations latency/throughput
• Cbench (packet-in processing rate)

• By analyzing the results, we hope to
• provide network operators and application developers with a "first look" of ONOS’

performance capability.
• In addition, the performance results should help developers gain insights for identifying

performance bottlenecks and optimization opportunities.

• Note: test results are from onos-1.12 branch (comparing with onos-1.10)

Methodologies
• Performance measured at increasing scale

• The general theme of all test cases is to make measurements on ONOS as it scales
from 1 node to 3, 5, 7 nodes.

• In order to characterize ONOS’ intrinsic characteristics we developed a few
utilities for the experiments
• Null Providers that act as device, link, host producers as well as a sink of flow rules.

• for bypassing Openflow adapters and eliminate potential performance limits from having to use real or
emulated Openflow devices.

• Load generators that interface with ONOS Java APIs
• for generating a high-level of loading from the application or the network interfaces to stretch ONOS's

performance limits.
• Meters in "topology-events-metrics" and "intents-events-metrics" apps

• for some of the timing and rate related tests to capture key event timestamps and processing rates

ONOS 1 ONOS 2 ONOS 7

Methodologies

Distributed Core

NB Core API

SB Core API

Rest API

Adapters and Protocols Null Providers

Mininet

Load Generator

(Cluster size: 1,3,5,7)
……

Load Generator

Testing Environment

• Gerrit+Jenkins+Wiki

• Test clusters
• Bare-metal Cluster:

• 7 onos instances
• TestON + Mininet

Topology Change Latency
• To measure how quickly ONOS can respond to different types of

topology events, such as port up/down, switch add/remove or host
discovery (tested with OpenFlow)
• Switch up/down latency
• Port up/down latency
• Host discovery latency

Switch Up/Down Latency
• Switch up takes 50ms which is the same as onos-1.10
• Switch down takes 3ms for single-instance and 7ms for multi-instance (it was

5ms in onos-1.10 and the increase was due to a functionality fix)

Port Up/Down Latency
• Port up takes 7ms for single-instance and 15ms for multi-instance
• Port down takes 3~5ms
• Results stay the same as onos-1.10

Host Discovery
• Host discovery latency is around 4ms
• Latency in multi-instance case dropped from ~100ms (onos-1.10) to 4-5ms

Topology Scaling
• To measure the latency

and capacity for ONOS to discover
and maintain the data plane
topology

• Tested with OpenFlow

• A 3-node ONOS cluster can
discover and maintain up to 50x50
switches with the same number of
hosts in a torus topology in Mininet
• It was 40x40 in ono-1.10

Flow Setup Throughput
• To measure the ability of ONOS to handle an increasing number of flow setup requests, and the

maximum load supported
• Tested with load generator (Java API) and null-providers
• Over 3million flows/s. (Results stay the same as onos-1.10)
• Note: Eventually Consistent flow rule store is being used by the flow rule subsystem

Flow Setup Latency
• To measure the latency of ONOS to install and remove flows via REST API.

• 63 switches and 100k flows in 500 batches (Tested with OpenFlow)
• Results stay the same as onos-1.10

Intent Operations Throughput
• To measure the ability of ONOS to handle an increasing number of intent requests, and the maximum

load supported
• Tested with load generator (Java API) and null-providers
• Over 200k intents/s (Results stay the same as onos-1.10)

Intent Operations Latency
• To measure how quickly ONOS is able to satisfy an intent request and how quickly it can react to

network failure events.
• Tested with load generator (Java API) and null-providers
• Results stay the same as onos-1.10

Cbench
• To measure how quickly ONOS processes and responds to packet-in messages

• ONOS is able to process over 1million packets/s
• Result got increased from ~700k packets/s (onos-1.10)

More Information
• The tests are accomplished by leveraging the automation-testing

framework called TestON.
• It allows us to consistently setup a typical user environment and emulate

their interactions with ONOS in a methodical and repetitive fashion.

• More information on Performance and Scale Tests
• TestON Guide https://wiki.onosproject.org/display/ONOS/

System+Testing+Guide
• Test Plans https://wiki.onosproject.org/pages/viewpage.action?

pageId=3441823
• Test Results (1.12) https://wiki.onosproject.org/display/ONOS/1.12-

Performance+and+Scale-out

https://wiki.onosproject.org/display/ONOS/System+Testing+Guide
https://wiki.onosproject.org/display/ONOS/System+Testing+Guide
https://wiki.onosproject.org/display/ONOS/System+Testing+Guide
https://wiki.onosproject.org/pages/viewpage.action?pageId=3441823
https://wiki.onosproject.org/pages/viewpage.action?pageId=3441823
https://wiki.onosproject.org/pages/viewpage.action?pageId=3441823
https://wiki.onosproject.org/display/ONOS/1.12-Performance+and+Scale-out
https://wiki.onosproject.org/display/ONOS/1.12-Performance+and+Scale-out
https://wiki.onosproject.org/display/ONOS/1.12-Performance+and+Scale-out

Q & A

• Thanks!

