Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Published from Jenkins build: https://jenkins.onosproject.org/job/HA-pipeline-master/1263/

...

HTML
<img src="https://jenkins.onosproject.org/view/QA/job/postjob-VM/lastSuccessfulBuild/artifact/HAbackupRecover_master_20-builds_graph.jpg", alt="HAbackupRecover", style="width:525px;height:350px;border:0">

commit 319b9abaab1bdd4b0120774f219e08c8a22469bc a73c236a87c6cd3fc91e638dcb3e893a837b6953 (HEAD -] master, origin/master, origin/HEAD)
Author: Daniel Park [dan.mcpark84@gmail.com]
AuthorDate: Fri Mon Sep 14 1117 17:2743:04 25 2018 +0900
Commit: Daniel Park [dan.mcpark84@gmailpark@sk.com]
CommitDate: Fri Wed Sep 14 1119 01:2750:04 28 2018 +0900
Supports the cast that VM access to VM's via floating ip's0000

Support flow trace CLI in openstack networking app.

Case 1: Starting up 7 node(s) ONOS cluster - PASS

...

  • 2.1 Assign switches to controllers - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet

...

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 21: Assigning Controller roles for switches - PASS

Check that ONOS is connected to each device. Then manually assign mastership to specific ONOS nodes using 'device-role'

  • 21.1 Assign mastership of switches to specific controllers - PASS (tick)
  • 21.2 Check mastership was correctly assigned - PASS (tick)

Case 3: Adding host Intents - PASS

Discover hosts by using pingall then assign predetermined host-to-host intents. After installation, check that the intent is distributed to all nodes and the state is INSTALLED

  • 3.1 Install reactive forwarding app - PASS (tick)
  • 3.2 Check app ids - PASS (tick)
  • 3.3 Discovering Hosts( Via pingall for now ) - PASS (tick)
  • 3.4 Uninstall reactive forwarding app - PASS (tick)
  • 3.5 Check app ids - PASS (tick)
  • 3.6 Add host intents via cli - PASS (tick)
  • 3.7 Intent Anti-Entropy dispersion - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 5: Setting up and gathering data for current state - PASS

...

topology

...

Case 14: Start Leadership Election app - PASS

  • 14.1 Install leadership election app - PASS (tick)
  • 14.2 Run for election on each node - PASS (tick)
  • 14.3 Active node was elected leader? - PASS (tick)

Case 15: Check that Leadership Election is still functional - PASS

  • 15.1 Run for election on each node - PASS (tick)
  • 15.2 Check that each node shows the same leader and candidates - PASS (tick)
  • 15.3 Find current leader and withdraw - PASS (tick)
  • 15.4 Check that a new node was elected leader - PASS (tick)
  • 15.5 Check that that new leader was the candidate of old leader - PASS (tick)
  • 15.6 Run for election on old leader( just so everyone is in the hat ) - PASS (tick)
  • 15.7 Check that oldLeader is a candidate, and leader if only 1 node - No Result (warning)

Case 16: Install Primitives app - PASS

  • 16.1 Install Primitives app - PASS (tick)

Case 17: Check for basic functionality with distributed primitives - FAIL

Test the methods of the distributed primitives (counters and sets) throught the cli

  • 17.1 Increment then get a default counter on each node - PASS (tick)
  • 17.2 Get then Increment a default counter on each node - PASS (tick)
  • 17.3 Counters we added have the correct values - PASS (tick)
  • 17.4 Add -8 to then get a default counter on each node - PASS (tick)
  • 17.5 Add 5 to then get a default counter on each node - PASS (tick)
  • 17.6 Get then add 5 to a default counter on each node - PASS (tick)
  • 17.7 Counters we added have the correct values - PASS (tick)
  • 17.8 Distributed Set get - PASS (tick)
  • 17.9 Distributed Set size - PASS (tick)
  • 17.10 Distributed Set add() - PASS (tick)
  • 17.11 Distributed Set addAll() - PASS (tick)
  • 17.12 Distributed Set contains() - PASS (tick)
  • 17.13 Distributed Set containsAll() - PASS (tick)
  • 17.14 Distributed Set remove() - PASS (tick)
  • 17.15 Distributed Set removeAll() - PASS (tick)
  • 17.16 Distributed Set addAll() - PASS (tick)
  • 17.17 Distributed Set clear() - FAIL (error)
    • Set clear was incorrect
  • 17.18 Distributed Set addAll() - PASS (tick)
  • 17.19 Distributed Set retain() - PASS (tick)
  • 17.20 Partitioned Transactional maps put - PASS (tick)
  • 17.21 Partitioned Transactional maps get - PASS (tick)
  • 17.22 Get the value of a new value - PASS (tick)
  • 17.23 Atomic Value set() - PASS (tick)
  • 17.24 Get the value after set() - PASS (tick)
  • 17.25 Atomic Value compareAndSet() - PASS (tick)
  • 17.26 Get the value after compareAndSet() - PASS (tick)
  • 17.27 Atomic Value getAndSet() - PASS (tick)
  • 17.28 Get the value after getAndSet() - PASS (tick)
  • 17.29 Atomic Value destory() - PASS (tick)
  • 17.30 Get the value after destroy() - FAIL (error)
    • Error getting atomic Value None, found: ['baz', 'baz', 'baz', 'baz', 'baz', 'baz', 'baz']
  • 17.31 Work Queue add() - PASS (tick)
  • 17.32 Check the work queue stats - PASS (tick)
  • 17.33 Work Queue addMultiple() - PASS (tick)
  • 17.34 Check the work queue stats - PASS (tick)
  • 17.35 Work Queue takeAndComplete() 1 - PASS (tick)
  • 17.36 Check the work queue stats - PASS (tick)
  • 17.37 Work Queue takeAndComplete() 2 - PASS (tick)
  • 17.38 Check the work queue stats - PASS (tick)
  • 17.39 Work Queue destroy() - PASS (tick)
  • 17.40 Check the work queue stats - FAIL (error)
    • Work Queue stats incorrect

Case 6: Restart entire ONOS cluster with backed up state - PASS

  • 6.1 Backup ONOS data - PASS (tick)
  • 6.2 Checking ONOS Logs for errors - No Result (warning)
  • 6.3 Uninstalling ONOS package - PASS (tick)
  • 6.4 Installing ONOS package - PASS (tick)
  • 6.5 Restore ONOS data - PASS (tick)
  • 6.6 Restart ONOS nodes - No Result (warning)
  • 6.7 Set up ONOS secure SSH - PASS (tick)
  • 6.8 Checking ONOS service - PASS (tick)
  • 6.9 Starting ONOS CLI sessions - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 3: Adding host Intents - PASS

Discover hosts by using pingall then assign predetermined host-to-host intents. After installation, check that the intent is distributed to all nodes and the state is INSTALLED

  • 3.1 Install reactive forwarding app - PASS (tick)
  • 3.2 Check app ids - PASS (tick)
  • 3.3 Discovering Hosts( Via pingall for now ) - PASS (tick)
  • 3.4 Uninstall reactive forwarding app - PASS (tick)
  • 3.5 Check app ids - PASS (tick)
  • 3.6 Add host intents via cli - PASS (tick)
  • 3.7 Intent Anti-Entropy dispersion - PASS (tick)

Case 7: Running ONOS Constant State Tests - PASS

  • 7.1 Check that each switch has a master - PASS (tick)
  • 7.2 Read device roles from ONOS - PASS (tick)
  • 7.3 Check for consistency in roles from each controller - PASS (tick)
  • 7.4 Get the intents from each controller - PASS (tick)
  • 7.5 Check for consistency in Intents from each controller - PASS (tick)
  • 7.6 Leadership Election is still functional - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 15: Check that Leadership Election is still functional - PASS

  • 15.1 Run for election on each node - PASS (tick)
  • 15.2 Check that each node shows the same leader and candidates - PASS (tick)
  • 15.3 Find current leader and withdraw - PASS (tick)
  • 15.4 Check that a new node was elected leader - PASS (tick)
  • 15.5 Check that that new leader was the candidate of old leader - PASS (tick)
  • 15.6 Run for election on old leader( just so everyone is in the hat ) - PASS (tick)
  • 15.7 Check that oldLeader is a candidate, and leader if only 1 node - No Result (warning)

Case 17: Check for basic functionality with distributed primitives - FAIL

Test the methods of the distributed primitives (counters and sets) throught the cli

...

  • Set clear was incorrect

...

- FAIL

...

  • Error getting atomic Value None, found: ['baz', 'baz', 'baz', 'baz', 'baz', 'baz', 'baz']

...

  • Error getting atomic Value None, found: ['baz', 'baz', 'baz', 'baz', 'baz', 'baz', 'baz']

...

  • Work Queue stats incorrect

...

  • Work Queue stats incorrect

...

  • Work Queue stats incorrect

...

  • Work Queue stats incorrect

...

  • Work Queue stats incorrect

Case 9: Turn off a link to ensure that Link Discovery is working properly - PASS

  • 9.1 Kill Link between s28 and s3 - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 10: Restore a link to ensure that Link Discovery is working properly - PASS

  • 10.1 Bring link between s28 and s3 back up - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 11: Killing a switch to ensure it is discovered correctly - PASS

  • 11.1 Kill s5 - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 12: Adding a switch to ensure it is discovered correctly - PASS

  • 12.1 Add back s5 - PASS (tick)

Case 8: Compare ONOS Topology view to Mininet topology - PASS

Compare topology objects between Mininet and ONOS

  • 8.1 Comparing ONOS topology to MN topology - PASS (tick)
  • 8.2 Hosts view is consistent across all ONOS nodes - PASS (tick)
  • 8.3 Hosts information is correct - PASS (tick)
  • 8.4 Host attachment points to the network - PASS (tick)
  • 8.5 Clusters view is consistent across all ONOS nodes - PASS (tick)
  • 8.6 There is only one SCC - PASS (tick)
  • 8.7 Device information is correct - PASS (tick)
  • 8.8 Links are correct - PASS (tick)
  • 8.9 Hosts are correct - PASS (tick)
  • 8.10 Checking ONOS nodes - PASS (tick)

Case 4: Verify connectivity by sending traffic across Intents - PASS

Ping across added host intents to check functionality and check the state of the intent

  • 4.1 Check Intent state - PASS (tick)
  • 4.2 Ping across added host intents - PASS (tick)
  • 4.3 Check leadership of topics - PASS (tick)
  • 4.4 Wait a minute then ping again - PASS (tick)

Case 13: Test Cleanup - PASS

...