Have questions? Stuck? Please check our FAQ for some common questions and answers.

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

This tutorial is in progress, and it does not function on the current vm.

Welcome to the Distributed ONOS Tutorial. 

In this tutorial you will learn to write a distributed ONOS application. The application you will be writing is called BYON (Bring Your Own Network). This tutorial will teach you how to implement an ONOS service, an ONOS store (both trivial and distributed) and how to use parts of the CLI and Northbound API. First, you will start with a single instance implementation which will be fully functional. After this, you will implement a distributed implementation of the service. The idea here will be for you to see how simple transitioning from a trivial single instance implementation to a distributed implementation. Believe it of not, most of your code does not change. (smile)

Introduction

Pre-requisites

You will need a computer with at least 2GB of RAM and at least 5GB of free hard disk space. A faster processor or solid-state drive will speed up the virtual machine boot time, and a larger screen will help to manage multiple terminal windows.

The computer can run Windows, Mac OS X, or Linux – all work fine with VirtualBox, the only software requirement.

To install VirtualBox, you will need administrative access to the machine.

The tutorial instructions require prior knowledge of SDN in general, and OpenFlow and Mininet in particular. So please first complete the OpenFlow tutorial and the Mininet walkthroughAlso being familiar with Apache Karaf would be helpful although not entirely required.

Stuck? Found a bug? Questions?

Email us if you’re stuck, think you’ve found a bug, or just want to send some feedback. Please have a look at the guidelines to learn how to efficiently submit a bug report.

Setup your environment

Install required software

You will need to acquire two files: a VirtualBox installer and the Tutorial VM. 

After you have downloaded VirtualBox, install it, then go to the next section to verify that the VM is working on your system.

Create Virtual Machine

Double-click on the downloaded tutorial zipfile. This will give you an OVF file. Open the OVF file, this will open virtual box with an import dialog. Make sure you provision your VM with 4GB of RAM and if possible 4 CPUs if possible, if not 2 CPUs should be ok.

Click on import. When the import is finished start the VM and login using:

USERNAME: distributed

PASSWORD: distributed

Important Command Prompt Notes

In this tutorial, commands are shown along with a command prompt to indicate the subsystem for which they are intended.

For example,

onos>

indicates that you are in the ONOS command line, whereas

mininet>

indicates that you are in mininet.

Startup multiple docker instances

We will be using docker to spawn multiple ONOS instances. So before we dive into the code, let's provision some docker instances that will run ONOS. First, you should see that there is already an ONOS distributed tutorial images present on your system:

distributed@mininet-vm:~/onos$ sudo docker images
REPOSITORY           TAG                 IMAGE ID            CREATED             VIRTUAL SIZE
onos/tutorial-dist   latest              666b3c862984        13 hours ago        666.1 MB
ubuntu-upstart       14.10               e2b2af39309a        7 days ago          264.2 MB

At this point you are ready to spawn your ONOS instances. To do this we will spawn three docker instances that will be detached and running in the background. 

distributed@mininet-vm:~/onos$ sudo docker run -t -P  -i -d --name onos-1 onos/tutorial-dist
	<docker-instance-id>
distributed@mininet-vm:~/onos$ sudo docker run -t -P  -i -d --name onos-2 onos/tutorial-dist
	<docker-instance-id>
distributed@mininet-vm:~/onos$ sudo docker run -t -P  -i -d --name onos-3 onos/tutorial-dist
	<docker-instance-id>

If you go the following error message:

distributed@mininet-vm:~$ sudo docker run -t -P  -i -d --name onos-1 onos/tutorial-dist
2014/12/11 10:55:53 Error response from daemon: Conflict, The name onos-1 is already assigned to 26d8c84f8a50. You have to delete (or rename) that container to be able to assign onos-1 to a container again.
distributed@mininet-vm:~$ 

which should only happen if you have already build your docker instance then you only need to start it:

distributed@mininet-vm:~$ sudo docker start onos-1

 Now you should have three docker instances up and running

distributed@mininet-vm:~$ sudo docker ps
CONTAINER ID        IMAGE                       COMMAND             CREATED              STATUS              PORTS                                                                     NAMES
fc08370eb3d0        onos/tutorial-dist:latest   "/sbin/init"        About a minute ago   Up About a minute   0.0.0.0:49168->22/tcp, 0.0.0.0:49169->6633/tcp, 0.0.0.0:49170->8181/tcp   onos-3              
bc725b09deed        onos/tutorial-dist:latest   "/sbin/init"        About a minute ago   Up About a minute   0.0.0.0:49165->22/tcp, 0.0.0.0:49166->6633/tcp, 0.0.0.0:49167->8181/tcp   onos-2              
26d8c84f8a50        onos/tutorial-dist:latest   "/sbin/init"        About a minute ago   Up About a minute   0.0.0.0:49162->22/tcp, 0.0.0.0:49163->6633/tcp, 0.0.0.0:49164->8181/tcp   onos-1              
distributed@mininet-vm:~$ 

Ok now that we have all our docker instances up and running we simply need to set them up with ONOS. To do this we will use the standard ONOS toolset which would be the same set of commands if you were to deploy ONOS on a VM or bare metal machine.

Setting up ONOS in spawned docker instances (also known as docking the docker (big grin))

First, let's start by making sure our environment is correctly setup. 

distributed@mininet-vm:~$ cell docker
ONOS_CELL=docker
OCI=172.17.0.2
OC1=172.17.0.2
OC2=172.17.0.3
OC3=172.17.0.4
OCN=localhost
ONOS_FEATURES=webconsole,onos-api,onos-core,onos-cli,onos-rest,onos-gui,onos-openflow,onos-app-fwd,onos-app-proxyarp,onos-app-mobility
ONOS_USER=root
ONOS_NIC=172.17.0.*

 

First thing we need to do is setup passwordless access to our instances, this will safe you a ton of time especially when developing and pushing your component frequently. ONOS provides a script that will push your local key to the instance: 

distributed@mininet-vm:~$ onos-push-keys $OC1
root@172.17.0.5's password: onosrocks
distributed@mininet-vm:~$ onos-push-keys $OC2
root@172.17.0.5's password: onosrocks
distributed@mininet-vm:~$ onos-push-keys $OC3
root@172.17.0.5's password: onosrocks

The password for your instance is onosrocks. You will need to do this for each instance. Now we just need to package ONOS by running:

distributed@mininet-vm:~$ onos-package
-rw-rw-r-- 1 distributed distributed 41940395 Dec 11 13:20 /tmp/onos-1.0.0.distributed.tar.gz

This prepares an ONOS installations which can now be shipped to the remote instances:

distributed@mininet-vm:~$ onos-install $OC1
onos start/running, process 308
distributed@mininet-vm:~$ onos-install $OC2
onos start/running, process 302
distributed@mininet-vm:~$ onos-install $OC3
onos start/running, process 300
distributed@mininet-vm:~$

This has now installed ONOS on your docker instances.

 

Verifying that ONOS is deployed

Now ONOS is installed let's quickly run some tests to make sure everything is ok. Let's start by connecting to the ONOS cli:

distributed@mininet-vm:~$ onos -w $OC1
Connection to 172.17.0.2 closed.
Logging in as karaf
Welcome to Open Network Operating System (ONOS)!
     ____  _  ______  ____   
    / __ \/ |/ / __ \/ __/    
   / /_/ /    / /_/ /\ \       
   \____/_/|_/\____/___/      
                             
Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown ONOS.
onos> 

You should drop into the cli. Now in another cli window let's start mininet.

 

distributed@mininet-vm:~$ ./startmn.sh
mininet>

Now let's see if we have switches that are connected to ONOS:

onos> devices
id=of:0000000100000001, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000000100000002, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000000200000001, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000000200000002, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000000300000001, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000000300000002, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000010100000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000010200000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000020100000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000020200000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000030100000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:0000030200000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:1111000000000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
id=of:2222000000000000, available=false, role=NONE, type=SWITCH, mfr=Nicira, Inc., hw=Open vSwitch, sw=2.1.3, serial=None, protocol=OF_10
 Let's see if we can forward traffic:

 

mininet> pingall
*** Ping: testing ping reachability
h111 -> h112 h121 h122 h211 h212 h221 h222 h311 h312 h321 h322 
h112 -> h111 h121 h122 h211 h212 h221 h222 h311 h312 h321 h322 
h121 -> h111 h112 h122 h211 h212 h221 h222 h311 h312 h321 h322 
h122 -> h111 h112 h121 h211 h212 h221 h222 h311 h312 h321 h322 
h211 -> h111 h112 h121 h122 h212 h221 h222 h311 h312 h321 h322 
h212 -> h111 h112 h121 h122 h211 h221 h222 h311 h312 h321 h322 
h221 -> h111 h112 h121 h122 h211 h212 h222 h311 h312 h321 h322 
h222 -> h111 h112 h121 h122 h211 h212 h221 h311 h312 h321 h322 
h311 -> h111 h112 h121 h122 h211 h212 h221 h222 h312 h321 h322 
h312 -> h111 h112 h121 h122 h211 h212 h221 h222 h311 h321 h322 
h321 -> h111 h112 h121 h122 h211 h212 h221 h222 h311 h312 h322 
h322 -> h111 h112 h121 h122 h211 h212 h221 h222 h311 h312 h321 
*** Results: 0% dropped (132/132 received)

Finally let's see if we have switches connected to each instance of ONOS:

onos> masters
172.17.0.2: 5 devices
  of:0000000100000001
  of:0000000200000001
  of:0000000300000001
  of:0000020100000000
  of:0000030200000000
172.17.0.3: 2 devices
  of:0000000100000002
  of:0000000300000002
172.17.0.4: 7 devices
  of:0000000200000002
  of:0000010100000000
  of:0000010200000000
  of:0000020200000000
  of:0000030100000000
  of:1111000000000000
  of:2222000000000000

The number of switches per ONOS instance may be different for you because mastership is simply obtained by the first controller which handshakes with the switch. If you would like to rebalance the switch-onos ratio simply run:

onos> balance-masters 

And now the output of the masters command should give you something similar to this:

onos> masters
172.17.0.2: 5 devices
  of:0000000100000001
  of:0000000200000001
  of:0000000300000001
  of:0000020100000000
  of:0000030200000000
172.17.0.3: 4 devices
  of:0000000100000002
  of:0000000300000002
  of:0000020200000000
  of:1111000000000000
172.17.0.4: 5 devices
  of:0000000200000002
  of:0000010100000000
  of:0000010200000000
  of:0000030100000000
  of:2222000000000000

 

At this point, you multi-instance ONOS deployment is functional. Let's move on to writing some code.

 

  • No labels