Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  1. Build ONOS master

    Code Block
    languagebash
    $ cd ~/onos
    $ git pull origin master
    $ buck build onos
  2. Run ONOS

    Code Block
    languagebash
    $ export ONOS_APPS=drivers.bmv2,proxyarp,lldpprovider,hostprovider,fwd
    $ buck run onos-local -- clean

    The variable ONOS_APPS indicates which ONOS applications to execute at ONOS boot. The list includes the BMv2 drivers (based on P4Runtime), the Proxy ARP application, the LLDP Link Provider, the Host Location Provider, and the Reactive Forwarding application. These applications combined together provide ONOS with capabilities to discover the topology (via injection of LLDP packets), the hosts (by intercepting and handling ARP requests) and to provide basic point-to-point connectivity.

  3. On a second terminal shell, access the ONOS command line:

    Code Block
    languagebash
    $ onos localhost
  4. Check that all applications have been loaded successfully. On the ONOS command line, type:

    Code Block
    languagebash
    onos> apps -s -a

    You should see an output similar to this (depending on your startup apps defined in $ONOS_APPS)

    * 10 org.onosproject.drivers 1.13.0.SNAPSHOT Default Drivers
    * 35 org.onosproject.generaldeviceprovider 1.13.0.SNAPSHOT General Device Provider
    * 36 org.onosproject.protocols.grpc 1.13.0.SNAPSHOT gRPC Protocol Subsystem
    * 37 org.onosproject.protocols.p4runtime 1.13.0.SNAPSHOT P4Runtime Protocol Subsystem
    * 38 org.onosproject.p4runtime 1.13.0.SNAPSHOT P4Runtime Provider
    * 39 org.onosproject.drivers.p4runtime 1.13.0.SNAPSHOT P4Runtime Drivers
    * 42 org.onosproject.proxyarp 1.13.0.SNAPSHOT Proxy ARP/NDP
    * 44 org.onosproject.hostprovider 1.13.0.SNAPSHOT Host Location Provider
    * 45 org.onosproject.lldpprovider 1.13.0.SNAPSHOT LLDP Link Provider
    * 73 org.onosproject.pipelines.basic 1.13.0.SNAPSHOT Basic Pipelines
    * 119 org.onosproject.drivers.bmv2 1.13.0.SNAPSHOT BMv2 Drivers
    * 146 org.onosproject.fwd 1.13.0.SNAPSHOT Reactive Forwarding

  5. Start Mininet. On third VM terminal shell, type: 

    Code Block
    languagebash
    $ sudo -E mn --custom $BMV2_MN_PY --switch onosbmv2 --controller remote

    This will run a simple Mininet topology with 2 hosts connected to a BMv2 switch, to use a different topology please refer to the Mininet guide. The -E argument in sudo ensures that all environment variables are exported to the root user. $BMV2_MN_PY is used to point to the location of the Mininet custom file bmv2.py provided in ONOS. If successful, the output of the previous command should be similar to this:

    *** Creating network
    *** Adding controller
    *** Adding hosts:
    h1 h2
    *** Adding switches:
    s1
    *** Adding links:
    (h1, s1) (h2, s1)
    *** Configuring hosts
    h1 h2
    *** Starting controller
    c0
    *** Starting 1 switches
    s1
    Starting BMv2 target: simple_switch_grpc --device-id 1 -i 1@s1-eth1 -i 2@s1-eth2 --log-console -Lwarn --thrift-port 38148 --no-p4 -- --cpu-port 255 --grpc-server-addr 0.0.0.0:37346
    [1] 2370

    *** Starting CLI:
    mininet>
    Info
    titlebmv2.py custom Mininet script

    When using the bmv2.py custom Mininet script, files related to the execution of the BMv2 switch are stored under /tmp. The name of these files depends on the --device-id parameter used at BMv2 execution (see Mininet output). These files include:

    bmv2-1-grpc-port: contains the port used by the P4Runtime server executed by the BMv2 simple_switch_grpc target
    bmv2-1.-log: contains the BMv2 log
    bmv2-1-netcfg.json: the netcfg blob pushed to ONOS to discover the BMv2 switch

  6. Check that the BMv2 switch has successfully connected to ONOS. On the ONOS command line, check the output of the following command.

    onos> devices

    id=device:bmv2:1, available=false, local-status=connected 9m33s ago, role=NONE, type=SWITCH, mfr=p4.org, hw=master, sw=master, serial=unknown, driver=bmv2:org.onosproject.pipelines.basic, locType=geo, name=device:bmv2:1, protocol=[p4runtime]

    From the output, we can see that the BMv2 switch is connected (available=true), along with information on the P4 program (pipeconf) deployed (driver=bmv2:org.onosproject.pipelines.basic) and on the protocol used to control the switch (protocol=[p4runtime]).

  7. Check that the 2 hosts can ping each other. On the Mininet command line, use the pingall command check the output:

    Code Block
    languagetext
    mininet> pingall
    *** Ping: testing ping reachability
    h1 -> h2
    h2 -> h1
    *** Results: 0% dropped (2/2 received)

...